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Modeling of Generalized Coaxial

Probes in Rectangular Waveguides
Hui-Wen Yao, Student Member, IEEE,

Abstract-A rigorous approach combining the orthogonal ex-

pansion method for modeling cylindrical posts in rectangular

waveguides and the extension of the three short plane technique
is introduced to obtain the S-matrix for a general coaxial probe
in a rectangular waveguide. A cascading procedure is applied to

solve the problem of a probe near a waveguide discontinuity and
to obtain the response of a probe-excited band pass filter. The
computed results are in excellent agreement with the measured
results showing the usefulness of this method.

I. INTRODUCTION

A N IMPORTANT problem in many microwave applica-

tions is to characterize coaxial probes in rectangular

waveguides. Two commonly encountered configurations

are coaxial line-waveguide T-junctions and coaxial line-

waveguide transitions (coaxial probe excited semi-infinite

waveguides). The two configurations are closely related.

Over the years, considerable effort has been made to solve

the problems [1]–[5], [18]. In analysis in [1], a variational

method is used to obtain the expression of input impedance

for a coaxial probe in a rectangular waveguide by assuming a

single modal current located at the center of the probe. This

assumption leads to inaccurate results for a thick probe. Using

multifilament current approximation in the method of moment,

[3] improves the accuracy of impedance computation and

shows that the probe surface current has significant azimuthal

variation. However, [3] neglects the effect of the end surface

of the probe. In [2], an image theory is employed to develop

a closed form expression of input admittance for a hollow

probe in rectangular waveguide. A dielectric coated probe in

waveguide is studied in [4] and [5]. A disc-ended probe is

studied in [18] by a field matching method. Similar to [1], the

work in [2], [4], [5], and [18] is based on the assumption that

the current (or field) on the surface of the probe is uniform

in angular distribution. Besides, all the above analyses were

focused on computing the input impedance (admittance) of a

coaxial probe in a rectangular waveguide. However, in many

applications, for instance, in designs of probe excited cavity

filters and coax-waveguide T-junction manifold multiplexer,

it is essential to have the S-parameters of the transitions and

the T-junctions. In particular, in the case of a probe located in a

section of evanescent mode waveguide, such as a probe excited

evanescent mode cavity filter, or a probe near a waveguide

discontinuity, it is necessary to know the generalized S-

pararneters of the coaxial probe in the waveguide in order
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to design the probe accurately. Limited investigation has been

published for such cases. In [6], two-port S-parameters of a

coaxial line to waveguide transition is analyzed by three cavity

moment method assuming one propagating mode in both the

waveguide and the coaxial line. This analysis is valid for a

thin probe with simple shape and is incapable of computing

generalized S-parameters.

Recently, the orthogonal expansion method has been suc-

cessfully applied to solve the scattering by dielectric cylin-

drical posts in rectangular waveguide [7]-[9], Similar method

is also used in [10]. This method provides the generalized

scattering matrix and yields very reliable and accurate results.

Since the cylindrical post region is treated separately, the

method is flexible.

In this paper, a new approach, which combines the

orthogonal expansion method and the extension of the three

short plane technique [11]–[ 13], is introduced to model
the generalized S-parameters for more general structures of
coax-waveguide T-junctions and transitions. The generalized
S-parameters are obtained for all the higher-order modes

present in rectangular waveguides, but only for dominant mode
in coaxial lines. Theoretically, there is no approximations in

the method and no limitations on the thickness of the probe.

The convergence of the numerical solutions is tested. the

correctness of the results is confirmed by comparing the
computed results with the measurements. As an application
of the modeling, a probe-excited dielectric block filter is

analyzed, the simulated response is in good agreement with
the measured one.

II. MODELING PROCEDURE

The configuration under consideration is shown in Fig. 1, in

which a disc loaded probe coated with a layer of dielectric in a

rectangular waveguide is excited by a coaxial line. When both

sides of the rectangular waveguide extend to infinity, one has
a coax-waveguide T-junction. If one of the two waveguide

ports is shorted at some place, the configuration represents
a coax-waveguide transition. This configuration covers the
most practical structures of coaxial probes in rectangular
waveguides.

Modeling of the T-junction (transition) involves the follow-

ing steps: solving the generalized S-parameters of the two-port

network (one-port network) when the coaxial port of the T-

junction (transition) is shorted at certain place, and extracting

the three-port (two-port) generalized S-parameters from the

obtained two-port (one-port) S-matrices. When a waveguide

discontinuity is presented very close to a coaxial probe, a

special cascading algorithm using S-matrices can be applied

to solve the whole problem.

0018-9480/95$04.00 @ 1995 IEEE
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Fig. 1. Configuration of a general coaxial probe in a rectangular waveguide
with (a) cross section view, and (b) top view.

A. Modeling of General Cylindrical Post in

Rectangular Waveguide

When the coaxial port of the T-junction is shorted at

the position t-t (Fig. 1), the structure can be viewed as

a general cylindrical post in a rectangular waveguide. To

apply the orthogonal expansion method [7]–[9], the resulting

two-port network is divided into waveguide region “WR’

and post interaction region “PR’ by introducing an artificial

cylindrical boundary at p = a. The post interaction region

can be further divided into subregions according to the natural

cylindrical boundaries of the geometry. In the case ra S rl,

the subregions are: region I which consists of region 11

(p < r,, b, S g < bz) and region I, (m 5 p < r,,
b3sy<b+ cZ), region II(rdsp<rl, Osg<b+ d),

and region III (rl ~ p < a, O ~ y < b). Each of these

cylindrical regions can be treated as a multilayer parallel

plane bounded in y-direction in which the eigenvalues and

the eigenfunctions can be solved in close forms [14]. Then,

similar to [19], the boundary conditions on all the natural

cylindrical boundaries are forced to be satisfied. By taking

cross inner product to the electric field continuity equations

with the magnetic fields of the eigenmodes at the region with

larger effective nonconducting surface and to the magnetic

continuity equations with the electric fields of the eigenmodes

at the region with smaller nonconducting surface, one may

finally obtain a matrix equation in the form

(1)

where CIII and DIII, vectors of size JVIII (NIII represents

the number of eigenmodes used in region III), are the field

coefficients of the eigenmodes in region III related to the outer-

going and the inner-going cylindrical waves, respectively.

[Lf&] and [Af~I], matrices of size NIII x lV1lI, can be grouped

as diagonal block matrices in terms of d variations since

the eigenmodes with different #1 variations are decoupled.

This factor can be used to improve the efficiency of matrix

operations,

The fields in waveguide regions are related to the fields

in region III by applying boundary conditions at the artificial

boundary. Taking proper inner products to the field continuity

equations using both E and H fields of the eigenmodes in

region III, the following equations may be obtained [19]

[1[
cIII

1[ 1
[~&] [~j’] A(’)

@II =
[~&] [~j’] A(’)

[ 1[ 1
[A&] [Mj’] B(l)

+ [M;l] [M;’] B(2)
(2)

(i)where A(i) and B(i) are vectors of size Nw, representing

the field coefficients of the incident and reflected waves

in waveguide ‘i’ (i = 1, or 2), respectively. N;) is the

number of modes used in waveguide ‘ i‘. The elements of the

sparse matrices [MA] and [kf~ ] are determinate by the inner

products.

From (1) and (2), the generalized scattering matrix [St-t]

of the general cylindrical post in a rectangular waveguide can

be acquired as

[1[

B(l) _ [s:;’] [s:;’]
13(2) –

IF(’)] ‘[S’-’W1 ‘3)[S;;t] [Sj;’] A(2)

where the superscript ‘t-t’refers to the short plane t-t.

Equation (3) can be obtained only under the condition of

IVI*I = N$) + IV:), that is, the number of modes used in

region III must be equal to the total number of modes used

in both sides of the waveguide. In order to avoid singular

matrix when matching the artificial boundary, the eigenmodes

used in both region III and the waveguide regions have to be

selected carefully. The general rule of selecting the modes is:

the numbers of the modes with same y-variations in region III

and in the waveguide regions must be equal. For the case of

PMC at the z = O plane, one possible selection of the modes

is: Waveguide region 1 and 2

TEij i=l,3, . ..NZ. j=0,1,2,. .. AtY;

and

TM;j i=l,3,. ..lVZ, j=l,2,. ..lVV;

Cylindrical region III

(TEV);j z=1,2, . ..(NZ+ 1). j=l,2, . ..lVV.

and

(TMv)ij Z=0,1,2,... NZ, j=o,l,2,... Ivg

where IV. (odd) and NV are maximum indexes of the modes

used in waveguide regions. The numbers of the modes used

in the other cylindrical regions can be determined according

to the ratio of the height of the regions to that of region III in

order to have better convergence of numerical solutions [15],

[16].

If port 2 of the waveguide is shorted at the distance /

from the center of the probe, the short circuit condition

A(2) = [A]B(2) can be applied to (3) to obtain

B(l) = [@-~]@ (4)

[R’-t] = [Sj;’] + [S~;’] [A]{[l] - [S~~’][A]}-’ [Sj~t] (5)
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Fig. 2. (a) Coaxial-waveguide ‘T-junction with coaxial port shorted at three

different positions, and (b) S-matrix network representation.

where [A] is a diagonal matrix with diagonal element A~~ =

– exp–27y~. ?Y is the propagation constant Of ith waveguide
mode. [1] represents the identity matrix.

B. Extraction of S-Matrix

Assuming that there are i!$$) (i = 1,2) modes in waveguide

‘i’ and that only the dominant TEM mode exists in the coaxial

line beyond the position 1-1 (Fig. 2(a)), then the S-matrix of

the T-junction has the following form

[

[sllliv$)xiv#) [wv:)xfv~) [5’131AAJ.,

1[S] = [S21]N:) ~N# [S22]N:) ~N# [S23]## ~ ~ . (6)

[S3111XN$) [s32]~~~$) S33

When the coaxial port is shorted at positions t-t(t= 1,2,

and 3), the three-port S-matrix [S] of the T-junction redr.ices

to the two-port S-matrix [St-t] of a general cylindrical post

in a rectangular waveguide (Fig. 2(b)) solved in (3). The

relationship between [S] and [St-t ] can be readily obtained as

(&-s33)[s:,tl=(+ -s33)[sijl+[s231,s3jl

i, j=l,2; t=l,2,3 (7)

where 17t = —e–~$2~di. ,6 is the propagation constant of TEM

mode in the coaxial line.

From above equations, [S] may be extracted as

(
S33 = : Sy) + Sy + S33 )

(21)+ s:) (ga)

[Sij]:X = 17,A21
(+-S33)’S’J”

‘r2A12(*-s33)’s’~2’ ‘8b)

‘si’][s’’]$~ = (+-S33)’S$l’

-(+-s33) ’s’”
(8c)

(a)

~ ~i
!—.—.—.—.—.—.—. ._ ._ ._. ._ _. _. _._. ..;

[got

(b)

Fig. 3. (a) Coaxial-waveguide transition near a waveguide discontinuity, and
(b) network representation of the cascaded structure.

with

S(IJ) =

A21[S&1]11 + (A12 – A32)[S;;2]11 – A23[S;;3]11

rlA21[S&1]11 + r2(A12 – A32)[S&2]ll – r3A23[S:;3]ll

(8d)

where Aij = ~. The average taken in (8a) is used to,3
(1) – j@#, theminimize the error of the solution. When Nw –

properties of symmetrical networks can be applied to reduce

the computational effort.

Similarly, the S-matrix of a transition has the form

[

[S1lIN$)~N:) [SAT:) x,
‘s] = [S21]1XN:) 1S2, “ (9)

This 2-port S-matrix can be found either from the T-junction

S-matrix by terminating waveguide port 2 at proper position

or from three one-port reflection matrices [Rt-i] (t = 1,2,

and 3) obtained in the last section. No matter which method is

used, one can only solve for { [S12] [Szl] }, but not for [S12] and

[S21] separately. However, it will not effect the applications

of the modeling in many practical cases as being discussed in

the next section.

The accuracy of above extraction depends on the accuracy

of the solution at each short plane. The selection of the short

plane positions may also affect the accuracy of the extraction.

The optimum choice of the positions of the three short planes

is to make the phase difference between each two of them

120°.

C. Cascading Algorithm

In many applications, a coaxial probe is often placed in

close proximity to a waveguide discontinuity. In this case,

a modified cascading procedure can be applied as long as
one can obtain the generalized scattering matrix of the dis-

continuity. The coaxial line to waveguide transition cascaded

with a waveguide discontinuity through a length of waveguide

is shown in Fig. 3. The S-matrices of the transition and

discontinuity are [S(t)] and [S(d)], respectively. Because we
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Fig. 4. Convergence of S-parameters of a coaxial-waveguide transition with a disc loaded probe with different iv.:— N. = 7,. ..AJ7 = 5,- -
NZ = 3, – . –JVZ = 1. 2a = 0,9”, b = 0.4”. r. = 0.025”, rd = 0.045”, rl = 0.081”, bl = 0,b2 = 02”, b~ = 03”, t = 0.2”,

‘rd = f.g = 1.0, frc = 20,and j = 10 GHz.

only know {[ S~~)][S~)]}) [S\~)] and [S.fj~)] of the overall

structure can not be obtained separately. Instead, we have

[s$~)] = [s~~)] + [s[j)] {p] - p71[s$)] [r] [s~)] }-1

x [rl[s[~)][r][s~)] (lOa)

[sff)] [sf)] = [sfj)] {[q - [r] [sf~)] [r] [s$)] }-’[r]

x { [’w] [’4)1}
x {[~l–[rl [s#][rl.[sX) ]}-l[rlIs$?]

(lOb)

s$? = S$) + [s&)] [A] [s;?]

~;;) @J

— (1OC)S~) + ~ ~a,j “ (S$))t(s!l))j

1=1 ~=1

with

[A]= {[l] -[r][s\~)] [r][s~~)] }-’[r][s$)] [r] (led)

where [17] is a diagonal matrix describing the length of the

waveguide with diagonal elements given by 17,,, = e–~~~d.

azj is element of matrix [A]; (S~l))i is ith element of the row
(t)

vector [S21 ]; and (S~~))j jth element of the column vector

[s\;)].
Evaluation of 10(a) and (b) is straightforward if all sub-

matrices of [S(d)] are known. One also has enough information

‘0) if one notices that (S:)), (Sf~) )j is the ele-to compute S22

ment in the jth row and ith column of the matrix { [S[~)] [S!)] }

which is known from the transition modeling.

III. RESULTS

Computer programs have been developed to calculate the

S-matrix of a coaxial-waveguide T-junction or a coaxial-

waveguide transition. The eigenmodes used in waveguide

regions and cylindrical region III are selected according to

the rule given in Section H. The numbers of the modes in q!-

variation in all cylindrical regions are the same, but the number

of modes in y-variations in each region is determinate by the

ratio of the region height to the height of region III in order

to have good convergence. Numerical experiments show that

the convergence changes with the complexity of the shape of

the probe. Sample results showing the convergence of the S-

parameters of the dominant modes for a coaxial-waveguide

transition with a disc loaded probe are shown in Fig. 4. In

this case, N. = 5 and NY = 12 provide a convergent result.

For the probe with simple shape, IVz = 5 and ACv = 10 will

be sufficient. The computation time depends on the numbers

of the modes used. For the case of N,. = 5 and NV = 10,

it takes about one minute to obtain the scattering matiix of a

T-junction or a transition at one frequency point on the Sun

Station 5.

Fig. 5 shows the dominant mode scattering parameters of a

coaxial-waveguide T-junction in which the dielectric coated

coaxial probe is extended from the top to the bottom of the

waveguide. f. is the cut-off frequency of TEIO mode in the

waveguide. The figure also shows the measured results of

the S-parameters. The two sets of results are in excellent

agreement.

Fig. 6 compares the computed and measured results of

the dominant mode S-parameters for a coaxial-waveguide

transition with a disc loaded probe. It can be seen that a good

agreement between the numerical results and the experimental

results is achieved. The return loss of an adaptor with a disc

loaded probe is given in Fig. 7. Also included are the measured

and simulated results by [18].

In Fig. 8, the input impedance Z,n = Rin + jX,n at the

coaxial port of a coaxial-waveguide transition with a tuning
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TO = 0.0256”, rd = 0.0807”, t = 0,3228”, bl = O, bz = 0.2071”,
bs = 0.3094”, ~,d = G.g = 1, and a 50 Q SMA connector.
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Fig. 8. Input impedance of a coaxial probe excited semi-infinite waveguide

with a tuning rod from bottom wall of waveguide with b/2a = 0.4444,

bz/b = 0.425, l/2a = 0.3889, rO/a = 0.0556. and 50 Q coaxial line.

line (ZO) and computed from the reflection coefficient at

the coaxial port (port 2 in this case). Also included are the

measured results for bl = 0. Fig. 9 shows the input impedance

at the coaxial port of a coaxial-waveguide T-junction versus

the normalized frequency with change of the gap between the

probe and the bottom wall. The results are extended to about

3.85~C. Beyond that, the modeling is no longer valid since the

second propagating mode occurs in the coaxial line.
As an application of the modeling, the response of a

probe-excited dielectric block filter [17] shown in Fig. 10 is

simulated by cascading the probes with the dielectric block

resonators coupled by empty evanescent mode waveguide.

This filter is small in size and has an excellent stop band
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Fig. 10. Configuration of a probe-excited dielectric block filter with dimen-
sions.

performance. The input/output probe is in the evanescent mode

waveguide, and its dimensions was determined in [17] by

experiments. The other dimensions shown in Fig. 10 are the

measured values when the filter is partially assembled. The

real dimensions, which are unknown, may differ from the

given ones because of the way of assembling the filter to

eliminate the air gaps. The simulated response of the filter with

the dimensions given in Fig. 10 is presented and compared

with the measured response in Fig. 11. As can be seen,

fairly good agreement exists between numerical simulation and

experiment. The variation of the return loss of the computed

result is sharper than that of the measurement since the loss
of the filter is not taken into account in the simulation.

IV. CONCLUSION

The paper describes a new rigorous approach, which com-

bines the orthogonal expansion method and the extension of

the three short plane technique, for analyzing a general coaxial

probe in a rectangular waveguide. Scattering matrices are

obtained for both coaxial-waveguide T-junctions and coaxial

waveguide transitions. For solving the problem of a probe

near a waveguide discontinuity, a cascading method is applied.

As an application, the response of a probe-excited dielectric

Fig. 11. Simulated and measured responses of the filter,

block filter is simulated. The computed results are in excellent

agreement with the measured results for all cases. This method

will be very useful in analysis and design of coaxial-waveguide

adapters, coaxial probe excited cavity filters, and coaxial-

waveguide T-junction manifold multiplexer.
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